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1.0 INTRODUCTION

lL.1 Background

The design and development of advanced aircraft turbine
engines with higher thrust to weight ratios and improved
efficiency in the form of increased thrust specific fuel
consumption is being achieved by an increase 1h rotor
speceds. In order to reduce overall engine weight and
minimize disruption in the gas path by the introduction of
struts and vanes, bearing supports have increasingly become
more flexible while shaft diameters have increased to pro-
vide high bending and torsional stiffness. These factors
have combined to generate bearings with increased dn numbers
{(bearitny bore i1in millimeters times shaft speed in
revolutions per minute) while allowing for greater unit
misalignment capabilities. As indicated in Figqure 1, it is
anticipated that speed levels to 3.0 Ildn (million DN) will
be required by mid 1990s engine design.

The influence of geometric variations on roller
dynamics 1s increased at higher DN levels, and in many cases
1t has been the performance of the roller bearing which has
comproimised engine design., It is therefore imperative that
all aspects of roller bearing geometric design be analysed
as to their effect upon becaring performance. Field data
accumulated has indicated that bearing performance is very
sensitive to rolling element instabilities. This fact has

been cxemplified in the
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occurrences of roller bearing cage fractures that have taken
place in a turbofan engine compressor rotor system. The
nature of this fracture is graphically presented in figure
2. These instabilities are exacerbated in high DN bearings
and can cause roller skewing. This failure mode is
precipitated by the rapid eccentric wear on the end surface

of the rolling element or elements shown in figure 3.

Roller skidding by definition occurs when the rolling
rlements orbit the bearing at a speed below epicyclic. It
is believed that skidding is associated with light radial
loading at high shaft speeds. The resultant damage is
limited to the contact surfaces. The mechanism for skid
control is readily accessible in the application of
increased bearing loading. This increase is most usually
achieved by supplementing the bearing external load with an

internal preload design.

There are, of course, numerous possible influences on
rollers, most of which are inter-dependent to some extent as
indicated in figure 4., Of these numerous parameters, the
testing was restricted to those which were concluded by P&WA
(see ref. 1) testing to be most significant.

An cqually significant outcome of this testing was to
be the correlation of 60 mm (bore) bearing data with that
undertaken by P&WA in their bearing test program on 124 mm
bearings (see ref. 1), There has been, to date, a necessary
assumption that the influence of bearing geometric

irregularities are of equal significance irrespective of




FIGURE 2 CAGE FRACTURE IN
TURBOFAN ENGINE
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bearing si1ze. The conclusions resulting from this test
progjram could therefore facilitate the inclusion of a
bearing scaling factor which would be incorporated within

the bearing analysis programs currently being used.

In summary, therefore, the motivation for this study
was the consistent increase in bearing DN values, and the
associated influence of roller skewing and skidding upon
bearing failure. PFurthermore, there exists the need to
establish the effect of bearing design and manufacturing

runout tolerances.




2.4 EXPERIMENTAL PROGRAM DESCRIPTION

2.1 Objective

It is the primary objective of this program to
investigate the phenomenon of eccentric roller end wear 1in
small diameter (40 to 60 mm bore), high speed (up to
3.0 Mdn) roller bearings,

The program 1s designed to investigate the relative
influence of a number of design and manufacturing variables
on roller end wear to permit ranking of these variables in
order of 1mportance. It is further intended that the
program provide 1nformation relating to the accuracy of
extrapolation of conclusions (reached in an earlier program
conducted by Pratt & Whitney Aircraft (Ref. 1)) from 124 mm
bearings to 40-60 mm bearings. Should the findings show
that small diameter bearings manifest different behaviour
than do large bearings, it is a further objective to modify
the computer analysis developed by PWA (TRIBO-1) and
currently installed at Wright-Patterson AFB to provide the
avpropriate corrections to make 1t applicable to small

diameter bearings,.

Secondary objectives were to measure various roller
bearing performance characteristics such as cage speed, heat

generation, and etficiency ot the lubricant delivery system.
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2.2 Test Program Outline

The test program undertaken to attain the objective was
composed of two major parts: a series of 10-hour tests on
hearings manufactured with controlled levels of
manufacturing and design variables at speeds up to 50,000
RPM (3.0 Mdn) and two 60-hour demonstration endurance tests
on prototype bearings designed using knowledge gained from
the first part of the program. The endurance tests were to
he conducted on both 60 mm and 40 mm bore diameter
bearings. The latter test was to demonstrate scalability of
conclusions reached on the 60 mm tests to 40 mm. In an
attempt to avoid bias in the ranking of variables, the test
bearing set was designed using the partial factorial

statistically designed experiment approach.

2.3 Dbesign and Manufacturing Variables

Roller bearing parameters which are considered
influential to skewing are presented in Tabhle 1t. The
basic categories considered were design geometries,
manufacturing tolerances and quality control variables.
Based on experience gained from the P&WA test program, it
wuas decided that 7 parameters would be considered (See Table
2). Tt is apparent that six (6) of the scven (7) parameters
included were chosen {rom category I. An additional
parameter of guide flange designs based upon a curvature
radius of 2.0inches was introduced from category I1I. The
parameter of roller length variation, although presented in

category (1T,
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1s included in the length to diameter ratio of category I
(since all rollers are standardized at .2756 in (7 mm)).

The relative magnitude of the original test bearing
parameters proposed is presented in Figure 5A. The actual
relative values of parameters peculiar to each bearing which
was to he tested are presented in the matrix of figure 5B.
Test bearings prefixed by ESK 9785 were additional bearings
which would be required to separate the test parameters of
"roller end circular runout®, "corner radius runout" and

"roller crown drop runout”. That is, as a result of

manufacturing limitations, the original bearings (prefixed
by ES5K 9244) did not adequately differentiate these

. parameters with respect to the tolerance ranges. In
b addition, continued difficulties in producing a roller with
; a high "roller crown drop runout" necessitated the removal

of this parameter from the test list.

The combinations of the variables among the test bearings is
indicated by two levels of parameter variation and are
represented by "H" (High) and "L" (Low) respectively, with
the horizontal axis representing bearing design
consideration while the vertical axis represents

manufacturing tolerance controls.

2.3.1 Test Bearing Table Z2a represents the original

tolerance requirements. The values used with this table

have been established by analytical designs and
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manufacturing or production experience. In the case of a
particular parameter which was not to be considered within
any test bearing, that parameter value was kept at the level
of the baseline bearing, i.e., ESK 9244-11. The actual
levels of bearing parameters referenced in figqure 5B are
presented in tabhle 2B with the unshaded boxes highlighting

the deviations.

2.4 Bearing Configuration

2.4.1 Geometric Representation At the conceptual

stage of this program, it was decided that the bearing
configuration chosen should not only compliment the P&WA
work on 124 mm bearings, but should reflect the design and

operating environment peculiar to small engines.
The bearing size selected for the test program
was based upon a hearing located on the compressor rotor of

a modern turbofan engine.

2.4.2 Bearing General Description The basic roller

bearing selected for the test program is shown in Figure 6.
The bearing is a 24 roller, under-race lubricated bearing
with a 60 mm bore diameter. The initial bearings prefixed
by ESK 9244 were manufactured by "FAG" of Schweinfurt
Germany, from M-50 (AMS 6490) steel in accordance with
(Canadian Pratt & Whitney company specification) CPW 378
Specifications. The additional hearings (prefixed by ESK
9785) were manufactured by "Split Ball Bearing"” of Lebanon,
New Hampshire. For the purpose of this test

-14-
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program, a total of 17 bearings were manufactured. The
bearing inner ring provides for under race lubrication by 12
under race oil slots leading to radial oil holes supplying
equally the ring raceway as well as the cage land

diameters. The bearing outer ring is of a flanged design
provided with four clearance bolt mounting holes. A total
of 24 rollers were used to compliment a bearing set. Each
roller was identified on one end face by a number from 1 to
24 and were located in a sequential order within the cage
pockets. The cage was constructed without the roller
retention lugs in order to facilitate inspection of
individual rollers. 1In all other respects, the bearing cage
1s similar to any standard inner land riding retainer

employed within P&WC,

2.5 Test Rig

2.5.1 Test Section The rig test section 1s shown 1in

fiqure 7a and is essentially separated into two major

compar tments; the slave bearing section and the test bearing
section. The test bearing section is further subdivided
into the other compartments; one to receive 0il that is
spilled or rejected at the test bearing axial scoops and the
other compartment receiving oil which has passed through the
test bearing. A flexible diaphragm issued to isolate
interaction with the drive system and the shaft is supported
by two bearings, one of which 1s the test bearing. Radilal
loading is applied through a double set of roller bearings
while the shaft axial location as well as radial load
reaction is accomplished with a Conrad bearing. During

initial rig operation, reliability problems developed with

-18-
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the load bearing, which required redesign action. Figure 7b
depicts the modifications made to the test section shaft to

provide increased stabilility to the load bearings, as well as
the 1ntroduction of under race lubrication to the load

bearings.

Note that prior to the modifications to the test
section shaft, as shown in figure 7b, the test bearing
radial loads were 100 1lb, 300 lb and 500 1lb ratiher than 85
Ib, 250 1b and 400 lb respectively (sce table 5). The
revised loadings were introduced (after testing of ESK
4244-11) to maintain the radial load at the Conrad ball

e

bearing to pre-test section shaft modification levels.,

2.5.2 Drive Section The test section was driven

through a flexible diaphragm coupling manufactured by Bendix
and was used to 1isolate any possibility of bearing loading
which could have been introduced to the test section by
misalignment with the drive system. The power was supplied
by a 300 hp AC electric motor (Canadian General Electric
Model No. 142962) operating at the design speed of 3,560
rpm. The test section maximum operating speed of 50,000 rpm
wvas achilieved through two General Electric speed increase
year boxes (5231-X Low Speed, S231-AZ2-1 high speed). The
speed control was by an eddy current coupling (Dynamic Corp.
Mdodel No. WCS 216B), connected to the electric motor, the
maximum speed rating of the coupling 1s 3,600 rpym. The test
sect1on and drive are schematically represented 1n Figure
7cC.

2.5.3 Lubrication System Load bearing lubrication was

inttrally achieved by side jetting, however as the test

vrogram proceeded, 1t became apparent that an under race otli
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scheme would be required to control inner race

temperatures. The final lubrication configuration, in
schematic form, is shown in figure 8. In this design, it was
possible to continually control the flowrates to the test and
load bearings. The o1l was introduced to the load bearings
through the shaft bore (see figure 7b) while the test bearing
lubrication was by an axial oil scoop. The lubrication to
the ball bearing by side jetting was maintained. The test
bearing compartment was segregated from the remainder of the
test section. This compartment was divided further to
separate the oil flows that passed through the test bearing
to that rejected or spilled at the axial oil scoop. The
electrical oil pump system was backed up by a pneumatic
system which would be automatically initiated in the event of

a fallure 1n the primary lubrication system.

2.5.4 Instrumentation The instrumentation employed to

monitor the bearing test was separated into two categories,
one sct was to record the performance of the test section
which was subdivided into the test bearing and slave bearing
operational conditions. The other set of instrumentation
was to monitor the performance of the test section drive
assembly parameters. Temperature measurements were made
using Type T (copper/constantan) thermocouples while
accelerometer readings were made with B+K accelerometers.

All pressures were recorded on bourdon type gauges.
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The test drive parameters consisted of temperature mea-
surements at the eddy current coupling cooling water exit.
Another sct of thermocouples were used to measure the
temperature of the bearing pads in the output of the high
speed gearbox. Additional thermocouples and pressure gauges
recorded temperatures and pressures of the drive system
. lubricant. The test section drive speed was monitored at
the outbut of the high speed gearbox while circuit breakers
provided additional safeguards for the electric motor and

eddy current coupling.

In the case of the test section, all of the bearing

outer raceway temperatures were measured at two azimuth

locations. 1Initial attempts to record inner ring
temperatures at the test roller bearing were abandoned when
the telemetry system employed proved unreliable. With the
introduction of under race lubrication at the load bhearings
through the bore of the shaft, (required for improved
bearing reliability) measurement of inner ring temperatures
by a slip ring also became impractical. The oil tank
temperature was monitored as was the oil temperature at the
jets to the test bearing. Oil scavenge temperature for both
the oil passing through the test bearing and the oil
rejected at the oil scoop were measured. A chip detector
was located in the oil scavenge lines for both the test
bearing oil scavenge and the oil returning from the locad and

support bearings.
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B&K Accelerometers were installed in the test section
structure to detect radial accelerations at the test bhearing
housing 1n both the horizontal and vertical directions. In
the loading arm an axial accelerometer was included in
addition to the radial gauges in the horizontzsl and vertical

directions.

The test bearing radial load was applied by reacting
the force applied at the load bearings by means of the pneu-
matic piston. Control was by the adjustment of a pressure
regulating valve to control the air pressure. The test
shaft rotational speed was measured by utilizing a Bentley
proximity probe to record the passing frequency of a toothed
wheel on the high speed gearbox output shaft, 01l
temperature was maintained by a Johnsons controller
regulating the flow of oil through the heat exchanger. 01l
heating was by five electric heaters (Chromolox 3 Kw)

installed in the oil tank.

Initially, all of the above parameters were monitored
manually. However after the first test run it hecame app-
arent that a form of automatic data recording (ADR) would be
requlred., It was also decided that l1imit values on the
narame ters monitored must be i1ncluded. These would provide
Automatic rig shutdown should any of the preset limits on a
specified parameter be exceeded. The automatic data
recording system installed was an "Autodata Eight"™ with 36

channels programmed to monitor the test bearing functions of

_26_
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speed, outer race temperatures as well as oil inlet and
outlet temperatures. The remaining channels were used to
monitor additional functions concerned with the performance
of the drive system. The channels and associated shutdown
limits are presented in Table 3 along with their assigned

functions.

In addition to the ADPR unit, an eight-channel tape
recorder was employed during the testing (see Table 4 for
channel definition). The tape recorder was an SE LAB model
with a frequency response limit of 10 Khz and was therefore
camnable of recordina anv of the frequencies which were
associated with the bearing performance. Indeed, the
highest frequencies which would be encountered were those of
roller spin speed and with a theoretical frequency of
approximately 3 Khz the signal was well within the range of
the unit employed. The test bearing cage speed was measured
using fibre optics. In this arrangement, the end face of
the cage was tarnished black, using a sodium sulfide
solution, over 180 degrees of the circumference as shown in
Figure 9. The optically contrasting surface was transformed
into an electrical output which produced a square wave
signal. By reducing the data onto a time function output,
the caqe rotational frequency could be established. The
roller spin speed was obtained bv magnetizing one roller
element across its diameter so that each end face contained
both a north and south pole, as is shown in Fiqure 10. Two

coils mounted on the rig 180 degrees apart but adjacent to

-27-
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A TABLE 3 f
i ADR HOOK-UP s
> ADR CHANNEL LIMIT PARAMETER UNIT ;
N K
< 000 275 Scoop 0Oil Inlet Temp. °F K
001 350 Scoop 0Oil Reject Temp. °F . 3
004 350 0Oil Outlet, Test Rear °F -
‘ 005 350 0il Outlet, Test Front °F A
’ 006 350 0il Outlet Supp. Brg. o -
007 275 0il Inlet Test Pump °F -
010 350 Test Brg. Outer Race Tl °F
011 350 Test Brg. Outer Race T2 °F :
- 012 340 load Brg. Left #1 oF :
: 013 340 Load Brg. Left #2 °F .
- 014 340 Load Brg. Right #1 op
- 015 340 Load Brg. Right #2 °F
- 016 320 Supp. Brg. #1 op §
' 017 320 Supp. Brg. #2 oF K
018 240 H/S Pinion #1 Skin Temp.
Front Brg. °F
019 240 H/S pinion #2 Skin Temp.
Front Brg. oF
: 020 240 H/S Pinion #3 Skin Temp.
. Front Brg. °F )
021 240 H/S Pinion #4 Skin Temp. N
Front Brg. °F ;
022 240 H/S Pinion #1 Skin Temp. S
; Back Brg. °F ;f
023 240 H/S Pinion #2 Skin Temp. -
Back Brqg. °F ;
024 240 H/S5 Pinion #3 Skin Temp. e
Back Brq. °F 7

~28-




TABLE 3

ADR HOOK-UP (Concluded)

. v e T
PR NP R R
AP P N AR

P ..
--------

® e
Sl

ADR CHANNEL LIMIT
025 240
026 350
027 350
028 350
029 350
040 425
041 425
042 340
043 200
044 200
045 200
049 1o0v
050 10v
051 0-110
052 0-100

PARAMETER

H/S Pinion #4 Skin Temp.

Back Brqg.

H/S Gearbox Brg. #1
H/S Gearbox Brg. #2
H/S Gearbox Brg. #3
H/S Gearbox Brg. #4
Test Brg. Vert. (Left)

Test Brg. Horiz. (Right)

Load Brg. Vert.

Load Brg. Horiz.

Load Brg. Axial

Supp. Brg.

Load Brg. Oil Flow
Shaft Speed

Test Brg. 0Oil Pressure
Load Brg. Oil Pressure

-29-
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UNIT

°F
°F
op
°F
°F
°F
°F
°F
°F
°F
°F

#/min

rpm

psig
psig




TABLE 4 #
¢
TAPE RECORDER HOOK-UP <
. r
) o
! CHANNEL LIMIT FUNCTION '
Lintd FUNCIION "
1 10 KHz a) To be used for load bearing
roller passing frequency S
with ability to switch from "]
load brg. A to B. I
b) To be able to superimpose )
voice on this channel. ;
2 1 KHz To be used for shaft speed N
recording.
3 1 KHz To be used for fibre optics
recording on test bearing.
: 4 5 KHz To be used for roller spin A
. recording on test bearing. jE
- 5 10 KHz To be used for accelerometer ;
450g OA (AA) at test bearing 1 off -
radial. <
2 6 10 KHz To be used for accelerometer 4
350g OA (AA) at load bearing 1 off !
. radial. N
. 7 10 KHz To be used for accelerometer fi
a 2009 OA (AA) at load bearing 1 off axial. -
8 10 Rdz To be used for accelerometer §‘
200g OA (AA) at support bearing 1 off j%
radial. o
-30- s
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SEE NOTE 2

POCKET No.1

ROLLER NUMBERED 1 TO 24
IN A CLOCKWISE DIRECTION
WHEN VIEWED FROM THIS SIDE

REFERENCE ROLLER BEARING ESK 9244

NOTE

1. 107 SODIUM SULFIDE TREATMENT TO CAGE STDE RALL ONLY
i.e. CAGE POCKET, 1NNER CIRCUMFLERENCE,AND OUTER
CIRIMEENENCE T B FRIEE OF STLVER SULFIDE

2. STLVER SULFIDE TO STOP AT CROSS RAIL NEAREST LAST
ALPHA-NUMERTC CHARACTER OF CAGE SFRTAL NUMBER

3. TO BE APPLTED ON S/N SIDE OF CACE

FIGURE 9 CAGE CONTRAST FOR FIBRE
OPTICS
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FIGURE 10 ROLLER MAGNETIZATION

-32~-




L e S L T N W N o O o S T Y Y o Y W = =

the shaft, would respond to the alternating north, south
field produced as the roller rotated about its own axis.
This roller was placed in the cage pocket adjacent to the
location of the change in contrast on the cage end face.
This position in the cage along with the orientation of the
fibre optics probe in relation to the radial loading

. directions on the bearing would permit correlation of the
roller azimuth position. By simultaneously triggering the
cage and roller signal on a time trace output, the frequency
of the roller spin about its own axis at any azimuth
position could be established. This would permit
correlation between roller spin speed and the azimuth
location in relation to the radial load zone to be
established.

2.6 TEST PROCEDURE

The test was conducted according to the schedule shown
in Table 5, with a total duration of 10 hours per bearing.
The test sequence consisted of three major components:
initial calibration, steady state endurance operation and

cyclic endurance.

The calibration run was conducted over the rotor speed
range of 16,666 rpm to 50,000 rpm which corresponds to DN
values from 1 MDN to 3 MIN (for the 60 mm test bearing
employed). The schedule was further refined to evaluate

three oil jet flow rates; the first being at 10 lb/min,

-33-
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which included three radial loadings of 85 1lb, 250 1lb and 400
Ib at the test bearing. The remaining two oil jet flows of 5
lb/min and 15 lb/min complimented only the one bearing
loading of 85 1b., This entire calibration schedule comprised
30 individual test points of 10 minutes each. At the end of
each individual test point, the pertinent parameters of

- bearing outer raceway temperatures, oil inlet and outlet
temperatures were recorded. Oil flow rates through the oil
scoop were measured during the speed steps for each of the

oil jet flow rates.

Steady state bearing operation was conducted at a rotor
speed of 50,000 rpm corresponding to 3 MDN. The test bearing
radial load of 85 1lb was also maintained constant throughout
this 4-hour operation sequence as was the oil jet flow rate
of 10 1b/min., The bearing parameters were recorded every
half hour.

These points were only used to monitor the condition of
the bearing as a safety measure to confirm its integrity
throughout this sequence of the test schedule.

Cyclic rotor speeds from 33,333 rpm to 45,833 rpm
provided the final stage in the test schedule. This cyclic
endurance consisted of 1 hour of operation with each cycle
from 2 MDN to 2.75 MDN and back to 2 MDN taking approximately
3 minutes. The o0il jet flow rate was maintained at 10 1lb/min
and the test bearing radial loading remained constant at 85
l1b. The bhearing performance was monitored every quarter hour

to establish the integrity of the bearing.
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ESK
ESK
ESK
ESK
ESK
ESK
ESK
ESK
ESK
ESK
ESK
ESK
ESK
ESK
ESK
ESK

according to

.........

randomly-selected sequence.

TEST BEARING

9244-11
9244-03
9244-10

The bearings were tested according to the following

TEST COMPLETION DATE

23/12/80
15/04/82
10,/09 /82

P el P A S ey el 2y

Test bearing 09 and 09A and 09B, were repetitions of
the same predominant parameters.
wear measurements from these three bearings would ensure

that the testing procedure was not being altered.

The lubricant used for the test section was formulated

supplied by the USAF.
additional MIL-L-7808 o0il was obtained from EXXON OIL.

et el e -l : ..
ARl S S T TN ol i G ¥ e PP UL U LI G IOy R B A S U, SO N Y LW

9244-09
9244-09A
9244-07
9244-02,
9244-01,
9244-08,
9244-06,
9244-098B,
9244-04,
9785-01,
9785-02,
9785-03,
9785-04

28/09/82
21/10/82
22/12/82

The consistency of the

MIL-L-7808. The initial quantity of oil was

However as testing proceeded,

~36-
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2.7 Measurements

Prior to initiating the test schedule, each individual
roller, which was numbered on the end face, was measured for
roller skew angle, roller weight as well as roller dynamic

unbalance.

2.7.1 Roller Geometric Measurements and Unbalance

Roller skew angles were obtained utilizing the fixtures
shown in Figure 11, The individual roller was locked within

the fixture using a thumb screw. The unit was then adjusted

so that it was tangent with the bearing raceway at the point
of roller contact with the inner raceway. The total side to
side skewing motion of the roller and fixtures were measured

at a known point from the roller axis. The skew angle

therefore is the arc sine of one half of the total side-to-

R side skewing travel of the fixture.

The roller individual weights were measured using a
Gramatic scale manufactured by Fisher Scientific Company.
5 The actual model used was the Macro Gramatic catalog
No. 1-910 with a capacity to 200 g. The specific
performance data of this unit is a precision of t.03 mg with

an accuracy in the optical range of $.05 mg.

The roller dynamic unbalance was obtained using a FAG
balancing machine model MGR 25-4., The individual roller
elements were marked with a contrasting paint over one half
of the roller end face diameter. This marked end was always

on the unnumbered end of the roller. The roller
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was then spun on its axis and the unbalance associated with

RPN

each end face plane was measured along with the phase angle
relative to the contrasted end face marking. The unbalance
measured in mg mm at each plane was then combined using the

program referred to in Figure 12. 4

. 2.7.2 Epicyclic Motion 1In a rolling bearing, the

elements orbit the bearing axis and at the same time revolve

about their own axis. This orbital motion which is

coincident with the bearing cage speed was therefore used to

establish the epicyclic motion of the bearing. The bearing

cage rotational speed was measured by using fibre optics. A

two level signal was generated by light reflected off of the

side rail of the cage. This bi-level light signal was the ’
result of the difference in reflectivity of the silver and a A%
tarnished (10% sodium sulfide) section of the cage, each :
consisting of 180 degree scctors of the cage circumference,
The change in reflectivity was then converted to an
electrical signal recorded on magnetic tape which could
subsequently be plotted against a time function to provide a
pulsating frequency equivalent to the cage rotational speed.

2.7.3 Roller Spin Speed To determine whether or not

rollers in high speed bearings experience pure rolling on
S the outer race, roller spin speed was measured on several -
; occasions, This measurement was accomplished using two -
. roller spin coils, which are essentially spools of magnet
wire and were supplied by "F.A.G". Its operation was
dependent upon the magnetically induced alternating
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clectrical signal gencrated by the roller which had
previously been magnetized with north and south poles across N
its diameter. The resulting signal was then amplified and

g recorded on magnetic tape for subsequent analysis.

2.7.4 Lubrication Effectiveness o~

2.7.4.1 01il Scoop Efficiency An investigation

of bearing oil flow rates and of the axial oil scoop
efficiency was carried out under constant load conditions
for the three oil jet flow rates of 5,10 and 15 lb/min.
This under-race lubricated bearing was supplied with oil via o
a rotating annulus formed by a l1ip on the spanner nut '
communicating with the bearing through axial slots in the

shaft outside diameter. -

The test section (FIG 7a) was constructed such that
lubricant discharged from the test bearing could be

collected separately from that spilled from the axial oil

)

8 scoop. Comparison of these flows permitted asscssment of

L
»

the efficiency of the lubricant delivery system.

EIE
LA A

2.7.4.2 Under—-Race vs Side Jet Lubrication The

test section load bearings were modified to provide

under-race lubrication for improved bearing reliability.
This modification to the oil supply system provided the
means for a comparison of the cooling effectiveness of the ii

systems.
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3.0 TEST RESULTS

3.1 ESK 9244-11

3.1.1 Roller Weight and Skew Angle Change The
individual roller weights as well as the skew angles were

measured and recorded before and after running the 10 hour
test. These results are presented in table 6. The
individual rollers show an almost negligible weight change
with an average loss of ,0001 gm. The result of a
statistical analysis on roller weight with a 99% confidence

level, was that the roller weight change 1is negligible.

The individual roller skew anglércﬁange was more
pronounced with an average increase in angle of 2.401
minutes (.000699 radians). Since this skew angle increase
is associated with an insignificant roller weight change, 1t
may be that the skew angle increase is guide flange wear
rather than roller end wear. Any gquide flange wear was not
visually detectable. A visual inspection of the roller end
faces did not indicate any pronounced wear. What wear was
present is of a concentric pattern which would tend to
maintain proper roller tracking as opposed to asymmetric
wear which has been associated with excessive roller skewing

during running and could lead to cage side rail fracture.
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The very small levels of roller weight losses
which occurred after 10 hours of operation coupled with the
very small amount of dynamic unbalance (See Table 7) would
be expected to result in a small skew angle increase as seen
in table 6., This is the case and as seen in the comparison
with other test bearings presented in Table 6, the skew
angle increases are the second lowest exceeding only those
of ESK 9244-03.

3.1.2 O0il Temperature Changes Figure 13 is a

presentation of the oil temperature changes recorded during
the 5 hour calibration run of 30 points. The plot is the
increase in oil temperature as it had passed through the

test bearing.

Further elaboration concerning the data
generated for this figure must be presented. The first
point is that because of extremely cold test cell ambient
conditions and the length of oil piping supplying the test
bearing, the temperatures at the oil jet nozzle were
significantly below the limits specified in the test
schedule of Table 5, The second point is that the
thermocouples which were located in the oil scavenge lines
were located approximately 3 feet downstream of the test
section. Therefore, some heat loss to the surroundings must
be expected within this length. A final point of
consideration is the heat conduction, within the test
section itself, from the slave bearing section o1l scavenge
which collects in this area before being returned to the oil

tank (sce figure 7a).

-44-

PRI R R R R YU AU




NI | AOALCs

NEENE
{66999°9¢9 609085G°GH 6£40S56°60 226210°6¢ 20.4S514°2 125h61°S —IWENNAIY
w““mww.mo $%66595°92 Hh66L£5°L9 L6BT126°2H 000089°8 000952 h %2
400£79°95 966.98°€S S00+.S°L8 ©00519°19 000619°¢ 000000°0 €2
966.69°95 100560°h§ B66HhHS 10T L6BEHE ES 00080£°T 0001TL"S 22
400042795 900HE6°2ZH 900£S°9¢€1 Hw66255° 1S 000009°0 000£94°0 <2
Hh6696h° LS 9662H2° 95 £00Hh88°'SS 666921°L2 00000£°0 000401°2 5
500892°8/ 666100°52 200896°09 96686L°61 00000£°0 000004°2 o1
6666£9°€21 000888°8H 200£.9°001 S00859°21 000002°1 000186°8 ot
£66565°SE1 8668.£°6¢ S66TH8° 19 B66489° 08 000006°0 36684 12 1
200.26°1¢1 9002(S°SHh 900821°49 200/91° 1S 000002°1 000S062° T n,:
L6696L°211 S00496°62 S66996° 1§ 0008S9°TT 0C000+h*2 0009+6°2 g1
$00€26° LS 000661°S 5662.2°589 966685°SS 000/8S5°1 000009°€ 41
866H6L°2T1 000504°H 666+0+°Sg 0004£€°2S 000002°1 000000°2 £1
L{00Hh06°SS £660/H°8¢ ©00£998°92 00090L° 41 000£80°2 L00020°LT Eal
260061°6/ L66E82°EE S66H66°T21 ©00569°95 000009°0 0004(6°1 i1
L66TLT TO0T 000969°21 hC0266°2H 20085¢£°€S 000002°1 0N0009°¢ ot
2006H1°16 ®00T5H'8T S662.2°86 9664H9h° S H 000006°0 000212 & C
SO0H2E"0HT S66LhT"Lh £00828°0I1T h660Hhh 6h 000EHS"9 gocoeere 9
96656£°911 S00EHTI'€E 900Hh5°T0T £66542°9¢ 000008"1T DOOTGE"Q /
2668.5£°99 £66055 6 0008/L" 48 S666TT1°0H 000692°21 00N6HI 6 5
H0026h°Lh 000955°S¢ ©00288° /ST 966££9° 18 000£94°0 007.985'6 5
h00S8L°9Hh 900.61'L6 656.08°6Hh L0026,°0S 000.86°2 000£€5°2 4
0668.£°9€1 900009°GS1 S00£2/2°he1 666.0£° 18 000048°2 0002605 <
866£5L°8¢L 66656T° 16 90018£°811 e66THIG2 000£50°€ N30608°§ 2
000822°0¢ H%66966° TH L66E9L Hh2T £00605°S2 000THL"T 000620°1 1
NEEME NEE&E mEErof mEEw,E mEEuE _suRuw
’ (4
" e 60~ 0t- £0- L1- OV Lioy
w976 ASsd wH7e Nsd £476 NSH %eT6 NSH hTe NS e NS s

JONVIVANN DINVNAQ H37704d 1VILINI

A A A AL SMERSS S o 8 a B.a

OB 2 A

L 318Vl

.

TN )

w

ahd

Aada

W, WY

»
- 0

[N

T
e o S,

g e W e e




' A § I
i 011 SUpprv APPLIFD BRG. ‘
UNCFR RACE | TRV LOAD
HIE Ih/min °F 1bs 1T —
1 Hl

x| 12

500 A

ml . | O

TANT TEMPERATURE RISE UF

) [— ,l
| 8
g /
i /
b < | r
g Z Z{/ i
I ,’
- /
!

0 /l Jﬁ MDN

N
o
N
\
\ \‘
~N
-
-
v,
-
=

h— " ~

FIGURE 14 OIL TEMPERATURE CHANGE
THROUGH TEST SECTION vs

SHAFT SPEED (ESK 9244-11)

........................




[NTRFRE N A e

el . Sk A S e e R N ™ o W o ey~

3.1.3 Bearing Outer Ring Temperature Test bearing

outer ring temperatures were measured with two thermocouples
(table No.3) with the results presented in figure 15. The
test results indicate that an oil jet flow rate of 10
l1b/min. provides the coolest outer ring temperature
operation at the 3.0 MDN level. However at speeds below 2.5
MDN, the minimum jet flow rate of 5 lb/min. is most
effective. The high jet flow of 15 lb/min. is the most
ineffective in maintaining cool outer ring operation., These
results can be explained by the fact that the high flow
rates of 15 1lb/min., would entrain a larger volume of oil
into the bearing than either of the other flow rates. Since
a major portion of the heat is generated (according to
theory) by viscous drag, it is logical that the high flow
results in the hottest running bearing. At the other
extreme of 5 1lb/min., the oil flow rate is not sufficient to
adequately cool the bearing at the high speed end of the
testing range although it provides for the coolest running

hbearing at the low speed range.

Running the bearing with 10 1lb/min. jet oil flow
and varying load shows that load is not a significant
parameter for heat generation and has a diminishing
significance at the higher speed range.

3.1.4 Bearing Oil Flow Rates An investigation of

bearing oil flow rates and axial scoop efficiency was
carried out under constant load conditions for the three oil
jet flow rates of 5, 10 and 15 lbh/min. The results

presented in figure 16 would indicate that the highest scoop
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rejection rate is synonomous with the highest jet flow
rates. In all cases, oil scoop efficiency improves with
increasing speed and is the result of the increased pumping
with the highest overall efficiency gain associated with the

maximum flow rate.

3.1.5 Bearing Cage Speed The results of the bearing

cage speed investigation are presented in figure 17. The
plot considers the effect of varying oil flows and bearing
loads over a range of shaft speeds. The figure is a plot of
percentage cage speed from theoretical epicyclic vs shaft
speed.

Considering only load changes (at a constant
flow rate of 10 lb/min) up to a maximum speed of 3 MDN it
can be seen that the percentage of cage speed for 100 1lb,
and 300 1b is virtually identical at 2 MDN and the
difference remains small even at 3 MDN. At the load of 500
Ib however and 2 !'MDN the percentage cage speed (to
theoretical) is about 5% higher, at 3 MDN, all speeds are
virtually identical. The results would imply that a
threshold exists above which slip is dramatically reduced.
As the speed is increased, it would appear that, for the
loads used, the overriding factor is that the cage speeds
are similar irrespective of load or oil flow rates.
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At shaft speeds below 2.5 MDN the cage
spced is shown to also be dependent upon the oil flow
rates, At 2 MDN for instance and 100 1lb load, the cage
speed varies from 77%, 89.5% and 83% of true epicyclic for
5, 10 and 15 lb/min. flow rates respectively. As speed
increases however, this difference is reduced and the main
affect seems to be that of speed and is independent of load.

Figure 17 indicates a maximum cage speed
occurring at 2.9 MDN and decreasing at the 3 MDN value. No

viable explanation for this effect has been found.

3.1.6 Bearing Roller Spin Speed The roller bearing

spin speed data was recorded on tape and the data reduced to
X, y plots maintaining the phase relationship with the
roller frequency and cage frequency. The roller spin speed
data has been reduced and presented in figures 18 and 19.
The figures present the roller spin speeds for different
azimuth positions considering loadings of 100 1lb and 500 1b
respectively and cover a variety of speed ranges. It was
expected that the spin speeds would increase as the roller
entered the bearing load zone and then decrease in the
unloaded areas. It is evident that the roller experienced a
wide range of speeds over one entire cage revolution. The
spin therefore does not appear to be a function of roller
azimuth, i.e., load position nor shaft speed cage
revolution.
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; Based on the results of this bearing test, no ;i
definitive conclusions can be realized as to the roller spin &
speed behaviour. v
;

3.2 ESK 9244-03 v
X

; , . "
3.2.1 Roller Weight & Skew Angle Change The 2
individual roller weights were measured before and after &%
running the 1l0-hour test and the differences are presented :i
in table 6. The individual rollers show an almost i
negligible weight change with an average loss of .00006 gm. S
with standard deviation of .000097 gm. '
The skew angles for each roller are recorded ‘

both before and after the 1l0-hour tests. These measurements i
are carried out with the test bearing inner race and .
rollers. The roller skew angle change for this bearing 1is N
recorded in table 6; an average skew angle change of .495 ‘
minute has been recorded. -
The total skew angle increase for this bearing K

is the smallest of all of the bearings tested and is ii
approximately one-fifth of the next smallest skew angle i
increase. The level of initial roller element dynamic ~
unbalance was also extremely low and is at least one half of ‘5
the next lowest value. Based on the low levels of initial ﬁ

(4

s 'r
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dynamic unbalance (see table 7) and weight change after
operation, the low skew angle increase was to be expected.

3.2.2 Oil Temperature Changes Figure 20 is a

presentation of the oil temperature changes recorded using
the five (5) hours of "Calibration™ running according to the

test sequence of table 5.

The o1l flow rate of 10 lb/min. with the three
radial loadings (see fig. 20) show an increase in
temperature with increased loading. 1In particular, for
loadings of 85 1lb and 250 1lbh the variation in oil
temperatures is minimal. However, as the loading is
increased to 400 1lb, a larger temperature increcase of 5°F
above the previous two lower loading conditions exists which
diminishes as the speed approaches 50,000 rpm. Here the
predominant factor in o0il temperature increase is speed
rather than load. 1In general an 0il temperature rise of
50°F occurs over the speed range from 1 MDN to 3 MDN. While
temperatures at speeds below 1 MDN remain relatively close

to oil inlet temperature.

The minimum oil flow rate of 5 lb/min and a
radial loading of 85 lb. results in the largest temperature
increasc of 64°F at 3 MDN. This is 14°F above the 10
lb/min. flow rate and l16°F above the maximum oil flow of 15

lb/min.
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The temperatures for 10 1lb/min. flow and 400
lb radial load is coincident with the 85 lb load and minimum
flow (5 1lb/min) until 2 MDN. Above this speed, and
disregarding the major influence of speed on temperature,
loading becomes more influential in increasing oil
temperatures, but the predominant factor would appear to be
oil flow rates.

The maximum oil flow rate of 15 lb/min results
in the lowest oil temperature increase. Although at 3 MDN,
the temperature is almost coincident with the 10 1lb/min
flow, at speed ranges below 1.5 MDN the higher flow rate
runs marginally hotter than a 10 lb/min oil flow.

3.2.3 Bearing Outer Ring Temperature Figure 21 is a

plot of the bearing outer ring temperature. The coolest
outer ring is associated with the highest oil flow rate of
15 1lb/min. for an overall gain of 55°F as compared to 43°F
for the oil temperature change of fiqgqure 20. The highest
outer ring temperature was encountered when the bearing was
run with the lowest 0il flow of 5 lb/min. In this case the
outer ring reached a temperature of 318°F and was rising
very sharply at the 3 MDN limit.

In case of a constant 10 1lb/min. oil flow
rate, the temperatures at 3 MDN increased as the loading
increased, although the temperatures for the loadings of 85
lb and 400 1lb are only approximately 6°F apart.

’l. e " OO
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The results of load variation and the constant
oil flow of 10 1b/min. would indicate that speed rather than

load is the predominant factor for heating of the bearing

ring. The variation in flow rates is, however, the major
factor with a temperature range, at 3 MDN, of 32°F (from 5
1b/min. to 15 1lb/min. oil flow rates).

3.2.4 Bearing Cage Speed The bearing cage speed is

established using a fibre optics probe and a test bearing
cage blackened over 180 azimuth degrees. The signal is
produced by reflection/absorption and produces a square
wave. When the signal is plotted as a time function, the

cage rotational frequency is established.

The cage signal strength decreased within the
first test points run on the bearing, and was lost within
the next several test points. Upon the completion of the
bearing test and subsequent rig strip, it was discovered
that all cages (i.e, test as well as support bearings) had
turned bhlack. It was, therefore, this lack of contrast
which prevented the fibre optics probe from functioning.

3.2.5 Roller Spin Speed Some difficulty has been

experienced with this equipment, and shaft speed has been
registered rather than the roller spin speed. The source of
this anomaly has not been established but it may originate
from a residual magnetic field within the rig. The roller

spin coils can be connected either in series or in parallel
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and may influence the type of signal frequency received. At
the initiation of the test, the coils were wired and
positioned to generate the strongest signal, and it was not
until data reduction began that the loss of spin frequency
became apparent.

3.3 ESK 9244-10

3.3.1 Roller Weight and Skew Angle Change The
individual roller weight and skew angle changes are

presented in Table 6 and are the results of 10 hours of
operation according to the test schedule. The mean skew
angle increase of .0125 radian is the highest value of the
bearings tested with the exception of ESK 9244-07 which had
terminated in bearing failure. The average weight loss of
the rolling elements of .0012 gm is also the largest loss of
any of the bearings tested, again with the exception of ESK
9244~-07. PRoller number 12 which did not reflect any weight
loss had a skew angle change approximately one-half of the
calculated mean while still being the second smallest value
of all 24 rolling elements. The largest skew angle increase
was associated with the largest dynamic unbalance (roller
number 23 see Tables 6,7). While the dynamic unbalance of
roller number 12 was approximately one quarter of the mean
value, the skew angle change was only one~half as large (as

the maximum value).
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3.4 ESK 9244-09 The testing of the bearing was interrupted
after 6 hours of running to facilitate modifications to the

test rig assembly. The testing had proceeded to the point
of completion of all the calibration running as well as 1
hour of the endurance operation. This opportunity was used
to perform geometrically associated measurements of roller
weights and skew angles. At the completion of the test
schedule, these same bearing parameters were again measured
and recorded. It was therefore possible to associate the

wear with a particular period of operation (see figure 22).

3.4.1 Roller Weight and Skew Angle Change The

results of the skew angle and weight changes are shown in

Table 6 after 6 hours of operation as well as at the
completion of the 10-hour test. Considering first the
results after six hours of operation, the average weight
change of .00044 gm includes the effect of three rollers
(numbered 9, 11 and 13) which did not show any loss of
roller weight. Paradoxically, two of these same rollers had
the most significant increase in roller skew angle change.
And, at the completion of this test, two of these rollers
still did not show a loss in roller weight although roller
number 11 almost doubled in skew angle increase. This
roller also had the fifth highest dynamic unbalance value.
The other roller (i.e roller number 13) which did not change
weight during operation showed a slight decrease in skew
angle change. This anomaly may have been the result of
roller orientation in relation to the wear on the end faces

when the measurement was taken. The mean weight lost after

6 hours of operation (60% of the total test time)
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approached 88% of the total weight loss while the mean skew
angle increased by approximately the same percentage of

89%. This would indicate that the roller wear rate is
initially very high and is reduced as the testing
progresses, suggesting a "wear in" period of operation. The
general trend is one of increasing skew angle with

increasing unbalance and roller weight loss. .

3.4.2 Bearing Cage Speed The results of the bearing

cage speed investigation are presented in Figure 23 and
consider the effects of variations in radial loads and oil

flow rates over the speed range of 1 MDN to 3 MDN.

Considering a constant oil flow rate of 10
lb/min and a variation in loading, the cage rotational speed
approaches the theoretical speed confirming the expected
result of hetter roller traction under the influence of the
higher load. However, as speeds increase above 1 MDN the
cage speed drops off slightly hut the higher radial loading
still produces cage speeds which are nearer to the
theoretical.

At 3 MDN however, the cage speeds corresponding to 400 1lb
and 85 1lb radial load are coincident and marainally above
the cage speed associated with the 250 1lb radial load. The
largest percentage cage slip at 1.0 MDN occurs under a
loading of 85 1lb with an oil flow rate of 5 lb/min. and is a
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few percentage points below the 10 lb/min. 0il flow rate
with corresponding loading. The 250 1lb load with 10
lb/min. oil supply have coincident points at 1 MDN with the
15 1lb/min. oil flow at the lower loading of 85 lb. At 3
MDN, the 15 lb/min. o0il flow rate (with 85 lb radial load)
resulted in the highest cage speed. Based on these two
results, it would suggest that either the higher percentage
of oil within the bearing provides additional
circumferential driving force, since the oil is delivered at
inner ring speed, or the extra heat generated within the
hearing as the result of oil churning, has reduced the
bearing 1internal clearance providing for additional roller
loading. At the extreme speed range of 3 MDN, the
predominant factor influencing cage speed appears to be the
rotor speed since all of the test points are within a few

percentage points of each other.

3.5 ESK 9244-09A The test schedule for this bearing was

temporarily interrupted after 4 hours of operation because

of difficulties experienced in the operation of the test
rig. In this sequence all of the "calibration” running had
not been completed with the operation of 15 lb/min. oil flow
rates outstanding. As in the case of the other interrupted
operation, measurements of welight and skew angle changes

were recorded to provide a graduation of change in these

parameters (see Figure 22).
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3.5.1 Roller Weight and Skew Angle Change The
results of the skew angle and weight changes presented in

Table 6 are measurements taken at the end of 4 hours of
operation and at the completion of the test schedules.
Considering the results after 4 hours of operation, some
instances of individual roller weight increases were
noticed, and have been attributed to errors in measurement
since these values were very small and at the limits of the
instrumentation. The weight change increased by a factor of
10 at the termination of the test while the skew angle
doubled from the measurements taken after 4 hours of
operation. These changes are much more dramatic than those
recorded for test bearing ESK 9244-09 after 6 hours and 10
hours of operation. In comparing these results, it would
appear that operation at 3 MDN, as occurred in ESK 9244-09,

was the major wear period for the bearing.

The results, on weight change, after 10 hours
of operation is virtually identical to that for the similar
bearing ESK 9244-09 tested. In the case of the skew angle,
however, this change appears to be in direct ratio to the
degree of initial dynamic roller unbalance (see table 7) in

each bearing set.

3.6 ESK 9244-07 The testing of this bearing was

terminated by the fracture of the cage side rail (sece Figure

24n through 24E). The total running time on this bearing

was 7 hours 15 minutes with cage failure occurring after 2
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and 1 quarter hours of operation in the endurance schedule,

Prior to this, the bearing operation was relatively

uneventful with the only noteworthy occurrences being a 5H-

minute run at test point no. 23 before it was terminated due

to high outer ring temperatures, and the elimination of

"calibration™ test point no. 24 also due to high outer race
. temperatures.

The test rig shutdown was automatic when the
outer raceway temperature reached the pre-set limit values
of 350 °F, maximum temperature recorded were 390 °F and 401
°F (for the two outer race thermocouples located in the
horizontal plane 180°F apart). Simultaneous with the
automatic shutdown, the test operator initiated emergency
shutdown procedures when shaft speed fluctuations were
noticed on the panel readout. The fractured cage was
apparent after the rig was shut down and the front cover
removed. The test bearing was removed for detailed
inspection and recording. The side rails of the cage pocket
containing roller number 21 were fractured and the side
rails on the non-flanged side (of the outer ring) were
approximately one quarter of the original axial width
suggesting wear from contact with the roller end face. Only
the cage pockets on each side of the fractured pocket showed
similar side rail wear and was located on the same side as

well. All of 24 roller elements were heavily pitted over
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their entire circumference with roller number 21 (located in

the cage pocket with the fractured side rails) showing the

most significant diametral change with approximately .005

in. loss in diameter (other rollers averaged .00l loss in

diameter). Heavy wear and metal removal were present in the

bearing outer race especlally toward the flanged side with
discoloration indicative of severe over temperature. The .
inner race showed signs of distress with the pitting over

the entire surface being more pronounced on the flanged side

of the bearing assembly.

3.6.1 Roller Weight and Skew Angle Change The
roller weight and skew angle changes recorded were the

result of the 7 hour 15 minute test run and the subsequent
bearing cage fracture. Since the final weight and skew
angle measurements were made after the bearing failure, it
is impossible to assign values of change to normal operation
up to the failure point from those associated with the
bearing cage fracture. The skew angle increases were
remarkably consistent, as is obvious in reviewing the
results presented in table 6, with roller number 21 only, -
being 30% above the average, the weight loss for this roller :
was much more dramatic at 116% above the average value. The
dynamic unbalance of this particular roller however was 353%
below the average (see table 7)., If it is assumed that the

cage side rail wear was the result of roller skewing motion

before fracture, then factors other than initial dynamic
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unbalance of the roller must be considered. The results
presented in Table 6, because they are measurements taken
subsequent to the bearing failure, must be viewed with
caution, the initial dynamic unbalance however does provide
for valid comparisons. In this case, the average dynamic
unbalance is exceeded only slightly by the highest unbalance
measured which is associated with bearing ESK 9244-09, and
is almost twice as high as the next largest initial mean
dynamic roller unbalance value measured on the duplicate
bearing ESK 9244-09A.

3.7 Bearing Not Tested Testing on bearing ESK

9244-01 was terminated at point 27 of the calibration
schedule when a failure of the Conrad bearing occurred.
Investigation of this failure revealed a significant design
fault in the test section to drive coupling adapter.
Rectification of this problem would have required extensive
funding beyond contract and it was agreed with the USAF that
the program be terminated at this point and conclusions be

drawn from data already generated.

Bearings not tested as a result of this

decision were as follows:

ESK 9244-01
ESK 9244-02
ESK 9244-08
ESK 9244-06
KSK 9244-09B
ESK 9244-04
ESK 9785-01
ESK 9785-02
ESK 9785-03
ESK 9785-04
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3.8 Load Bearing Lubrication The modification to the

load bearing o0il supply system provided the means for a

direct comparison of the cooling effectiveness of the side
jetted and under-race oil schemes. These results are
presented for the speed ranges of 1.0 MDN to 3.0 MDN. As is

LSl At it AR VTR

evident in figure 25, a reduction in the raceway temperature
of approximately 100°F at 3 MDN was achieved by the

employment of under-race lubrication.

s, 0 ey

4.0 ANALYSIS OF ROLLER END WEAR DATA

In fulfillment of the requirements of reference 1 the
wear data has been subjected to statistical analysis at
P&WA, East Hartford and the results and conclusions drawn

thercfrom are detailed in the following report.

4.1 Summary The present 60 mm bearing data suggests

a qualitative trend in agreement with the 124 mm test

results but does not warrant any modification of the TRIBO 1

v 1 .
a K s ¢ T

wear model. Any further tests to improve the wear model

should be directed toward:

i) Clarifying the wear coefficient in relation to
break-in vs steady state and the effects of speed, oil

temperatures, oil flow etc.

11) Completion of the test as planned in the original

design cxperiment, see Table 1 and

111) Final correlation of the data resulting from .
these tests with the TRIBO 1 model. >
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4,2 Statistical Analysis of Wear Data The

statistical analysis of the wear results from the small bore
bearing tests was completed. Table 8 displays the
recommended design experiment test plan for evaluating

the effect of various geometric parameters on the wear
characteristics of 60 mm bearings. The experiment was
designed to enable separation of the main effects of seven .
parameters which would be done by evaluating bearings 1 thru
14, see Table 8. Furthermore, the effects of two bearing
vendors, FAG and SBB, bearings 6 and 15 respectively, would
be evaluated. Only six bearings were actually tested,
however with one bearing a repeat, No. 9A, and one bearing
No. 7 having failed. Table 9 shows the relative level of
the six controlled parameters and corresponding initial
dynamic unbalance. Inner ring guide flange height was held
at a constant level for these bearings, so it is not
included in the analysis. Since only four of the 14
recommended bearings were successfully tested, several
parameters were confounded; i.e., concurrent changing of
their relative (high-low) values occurred making it
impossible to deduce one trend as being more significant
than another. Also in Table 9 are the average wear values
of 24 rollers for the 10-hour test. The eight parameters
included in the analysis to explore the wear characteristics

are (sce Table 10 for actual dimensions):
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TABLE 8

RECOMMENDED DESIGN EXPERIMENT

BEARING PARAMETERS

BFARING
VENDOR NUMBER A B ¢ D E F G
1 0 0 0 0 0 1 1
2 0 0 0 0 1 1 1
3 0 o o0 1 0 0 0
4 0 0 1 0 0 1 0
5 0 0 1 1 | 0 1
FAG 6 1 1 0 0 0 0 0
7 1 1 0 1 1 1 1
8 1 1 1 0 1 0 1
a 1 1 1 1 0 1 1
10 1 1 1 1 1 1 0
11 (B/L) O 0 0 1 0 1 0
12 1 0 1 0 0 1 1
SBR 13 0 1 1 1 0 0 1
14 1 1 0 0 0 0 0
15 1 1 0 0 0 0 0

LEGEND

0 =~ indicates the low value of the parameter

o
f

indicates the hiqh value of the parameter

- DRoller Corner Radius Runout

- Roller Fnd Squareness

Roller Fnd Clearance

- Inner Ring Guide Flange Height
- Inner Race Taper

- Roller L/D Patio

G - Guide Flange Corntour
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TABLE 9 . RELATIVE WEAR RANKING
(WITHIN MATRIX)

0 1 INNER RACE TAPER
0 1 0 1 GUIDE FLANGE CONTOUR
o, 110, 1{0p 10,1 ROLLER L/D RATTO -
9,9A 10
- 3.4) )
(@)
© 7
e (1)
© KEY: Block includes bearing
© number and, in par-
- enthesis, the relative
< wear ranking
c
—_ 9A is a repeat of 9.
< 0 - Tow runout value
- — 1 - high runout value
<
<
c
>
° 3 |11
MEGIKE)
< v 5
2w owm 2 3
Lo B G Average Average Relative
22 % 3 Bearing ~ Weight Loss  ASkew Wear Rank
x 57 (grams) (radian)
= = = 7
[ o s .
Z 4 < 3 .00006 L0002 (6)
ox juni = - P
2 2ono. 7 .02982 L0281 (1)
“ w w 9 00050 L0117 ()]
= 9A 00060 L0061 (4)
= = 2z 10 00123 L0124 (2)
Z % 2 = i G001 L0007 (")
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TABLE 10

ACTUAL BEARING DIMENSIONS

BEARING PARAMETER 3

Roller Corner Rad. R/O .0018

Roller End Squareness .0005
Roller End Clearance . 024
Inner Ring G.F. Ht. 70.072
Inner Race Taper .172
Roller Length 6.004
Guide Flange Contour Flat

Initial Dyn. Unbalance 2.716

All parameters are measured in "mm" except

1

.0692

.0081

.028

70.096

3.438

8.003

Round

86.669

and Initial Dynamic Unbalance (mg-mm?)

.

-83~

9 9a

.0692 .065B

.0084 .0048

.078 .070

70.095 70.086

. 630 .458

8.008 8.004

Round Round

89.950 45.560

. - - - - . .
AP P IR N B I P S BRI, S N

YT M o
10 11

.0708 .0016

.0104 .0005 ié
.069 .027
70.087 69.737

3.323 .573

8.008 8.004

Flat Flat

39.810 5.194

Inner Race Taper (minutes)
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A. Roller Corner Radius Runout
B. Roller End Squareness

| LT |
ettt

C. Roller End Clearance

D. Inner Ring Guide Flange Height
E. Inner Race Taper ;j
F. Roller L/D .
G. Inner Ring Guide Flange Contour é
H. Initial Dynamic Unbalance T
{
Key observations from Table 9 are: (a) the data o
available for analysis is sparse resulting in confounded i

effects, (b) parameters A, B, and H increase concurrently as
relative wear increases, and (¢) parameter E increases as

relative wear increases.

The main parameters affecting high speed roller bearing R

life are considered to be average roller weight loss and

average skew angle change and will therefore be used to Q
evaluate and rank the roller bearing variables tested. For i
5 the statistical analysis these two dependent variables are
. expressed as follows:
- Y, , Average Weight loss "
- Y,, Average Skew Angle Change -
- . . :
5 Multiple regression equations were developed from the
. . . .
experimental weight loss and skew angle change data by the E
method of least squares. Each equation yields the mean
value of one of the dependent variables. The equations,
"
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therefore, yicld the expected wear performance of a roller
bearing under specific operating conditions. Prior to the
development of the actual regression equations, a
mathematical model was in each instance formulated relating
the independent variables to the dependent variable. The
general form of the model is a multivariate polynomial in
which the coefficients appear linearly. The terms in each
model are candidates for inclusion in the fitted regression
equation,

The general model takes the form:

A
Y=BOXO+BIXI ¢ +Ban+e=Y+e

i where Y is the observed value of a particular dependent
variable, either Y, or Y,, Q‘is the observed value of the
dependent variable computed from the expression involving
the X and B terms, where the X terms are the value of the

independent variables, the B terms are the coefficients to
be estimated from the experimental wear data, and e
represents the difference between the observed and the
estimated value of the dependent variable due to the

residual variation or experimental error in the

observations.
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The regression analysis was performed both with and r
without bearing 7 since it is not known how the failure
affected the magnitude of the wear characteristics. Thesce
data sets were analyzed in order to determine the values of -
the regression coefficients as well as other statistics.

The regression models developed for each dependent variable,
Yy, and Y, are shown in the tabulations below. The
information presented includes; N

. Variable name

. COEFFICIENTS: Calculated values of the regression
¢ coefficients

. SIGNIFICANCE LEVEL: The numerical percentage
describing the significance of a cause (independent

variable) and effect (dependent variable)

relationship. The higher the percent, the more

statistically meaningful the relationship.

. PERCENT VARIABILITY EXPLAINED: Rz, which is the .
square of the multiple correlation coefficient R, is
4 measure of the proportion of variation in the
dependent variable accounted for by the regression
cquation. The closer R? is to 100% the greater the
accuracy of the prediction equation.
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SEE, or Standard Error Fstimate, is the magnitude of
the error for the prediction of the dependent
parameter. PRegression analysis minimizes the SEE
value where

is the calculated value of the dependent variable

based on the regression equation

and

<>

<>

A
Y

is the actual value of the dependent variable

A
- SFE €Y £Y + SEF 68% of the time
A
- 2 SFF €Y €Y + 2 SEE 95% of the time
- 3 GFE €Y =Y + 3 SEF 99,.7% of the time

where the actual value will be contained within the

interval of Y + K SEE a given percent of the time.

A
R, the correlation between Y and Y, i1s an index

indicating the degree of association hetween 9 and Y,
where a value of 1.0 indicates a perfect fit, i.e.,
no experimental error, and a value of 0 indicates no

association, i.e., large experimental error.

N is the sample size
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p 4.2.1 Multivariate Linear Regression Without Bearing 7 o
e
)
.:'
[
X
o
r
* o
P :_“
Dependent Coefficient and % Variability i
Variable Independent Variable Intercept Significance Level Explained Sec R N Figure -
Average Roller Corner Radius Runout 0.00006 0.0105 (91s) 67.4 0.00031 0,821 S 29 '
Height Loss : "ot
Roller End Clearance -0.00022 0.0104 (85%) 55.0 0.00036 0.742 5 30 .
Roller End Squareness 0.00004 0.0939 (96%) 8l1.1 0.0002¢ 0.901 S 26 ."::-
Initial Dynamic Unbalance -0.00028 0.000006 (75%) 20.4 0.00048 '0.452 S 3
Average Skew Roller Corner Radius Runout ~0,00011 0.149% (98%) 86.1 0.0026 0.928 5 32 ..
Angle Change te
Roller End Clearance -0.00510 0,2098 (97%) 84.6 0.0027 ©0.%920 S 33 el
Roller End Squareness -0.00026 1.3008 (99.9%) 96.4 0.0009 0.992 S 27 ‘
Initial Dynamic Unbalance 0.00107 0.00014  (92%) 69.% 0.0038 0.834 S 34 -
._:;.
- ::.
-88-
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r
b The above regression cquations demonstrate that Roller End [
e
' Squareness is only slightly more significant than the other ;:
three parameters with which it is confounded. This
. comparison will not be done for the following equations i‘
p Y
f since two independent variables have been included, making a ;
similar comparison very difficult. o
4.2.2 Multivariate Linear Regression Including -
A
Rearina 7 O
. For Averaqge Weiqght Loss - No significant regression
possible because average weight loss for bearing 7 is e
20 times that of the next largest. -
. For Average Skew Angle Change (Figure 28) i
COFEFFICIENT SIGNIFICANCE LEVEL ti
Constant -0,00286
Inner Pace Taper -0.00385 95¢% -
Initial Dynamic Unbalance 0.00016 95% -
Percent Variability Fxplained = 93.0 SEE = 0.00357 radians :i
R = 0.964 N =6
The significance level permits the evaluation of each f}
term in the response regression equation with a value < 80% j§
indicating no significant effect and a value = 99% N
indicating a verv strong bhearing variable. Those S
independent parameters not included in the regression models .
were either not statistically significant, or correlates S
Z;}:
N
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with a parameter already in the equation (confounded). .

Figures 26, 27 and 29 thru 34 show graphic
representations of the single-variable equations. Figure 28

iy

exhibits the best fit line through the data for initial

)
. s

dynamic unbalance at both high and low levels of inner race

P

taper.

v S iy Ve W

o

4.3 TRIBO 1 and the Wear Model

Tu'-‘-:a,'

TRIBO 1 is a state-of-the-art cyclindrical roller
bearing design tool developed by P&W under contract with the
Navy and Air Force in the High Speed Roller Bearing Program, .
References 1 and 2. The program is composed of two basic >
modules - STATIC and SYSDYN. The module SYSDYN is, in turn,
composed of the modules CADYN and RODYN, Figure 35 shows the
relationship of the modules to each other and to the complete

program.

STATIC is the module containing the structural analysis
- of the bearing due to loads resulting from quasi-static

equilibrium. RODYN is the module that analyzes roller

dynamic behavior without the influence of the eclement

retainer or cage. CADYN is the module that analyzes the cage
'~ dynamic behavior without the influence of the rollers. The
module SYSDYN analyzes the complete system dynamic behavior
allowing full interaction among the rollers, the cage, and
the two raceways. The complete program, TRIBO 1, is employed
by running the modules STATIC and SYSDYN together so that the
output from STATIC is used as input to the module

PR A
S . .
4

'f'r'f'l"f'f'f .
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SYSDYN,.STATIC may also be run to provide input for the module
RODYN.

The computer program was constructed in a modular
fashion to maximize flexibility and efficiency and to allow

for partial analysis, wherein a certain aspect of the
analysis may be considered separately in order to save
computation time.

TRIBO 1 requires input information which specifies
significant geometry features of the bearing such as corner
radius, guide flange layback angle and end clearance. Each
of these geometry variables has an effect on the overall
force system acting on the rollers and cage and thus affects
the dynamic motion of the bearing. As bearing diameter
increases or decreases from some reference value, the
relative importance of one geometry feature compared to any
of the others may change. For example, parameters such as
roller diameter and length which affect the overall mass of
the roller may increase considerably if the bearing radius is
doubled, while roller end clearance which affects the dynamic
damping at the roller ends remains relatively constant.

TRIBO 1 has been correlated for 124 mm roller bearings
under contracts N00140-76-C~-0383 and N00140-81-C-4800. The
wear data generated from the parametric testing conducted
under these contracts has been incorporated into the TRIBO 1
wear model as described in reference 1. Updates to the
model, reference 3, included the effects of corner radius
runout and end runout on both dynamic behavior and wear.
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In each of the previous contracts, the relative
importance of each parameter with regard to the overall
dynamic behavior of the bearing, including its wear rate, was
well established via testing. Since the dynamic motion of
the bearing as modeled by TRIBO 1 was also correlated to the
same test data, there is a high degree of confidence that the
output roller motion and wear prediction are realistic for

bearings of similar size run at similar speeds.

Because of the small number of bearings successfully run
for the 60 mm program, it is not possible to statistically
separate the effect of each geometry parameter on the overall
motion or resulting wear. Thus, a comparison cannot be made
with the previous 124 mm data to determine if any changes in
the relative ranking of the individual geometry variables has
occurred. Without such a comparison, modification of the
existing TRIBO 1 wear model would not be meaningful and is
not recommended.

Review of the limited amount of data available does not
indicate that any significant changes in the relative
importance of any of thn tested parameters has occurred with
the reduction in bearing diameter to 60 mm. Thus, basic
trends identified in the original TRIBO 1 wear correlation
based on 124 mm bearing data have been confirmed by the 60 mm
test data but further quantification of the wear coefficients
in the analysis to reflect small bearing operation is not

practical under the current circumstances.
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The present TRIBO 1 wear model is based on the
applicability of Archard's Law of wear on impact sliding
during roller and guide flange metal to metal contact.
Archard's Law of Wear states that the wear

K P;iSj

Wy = — — = 1)
i I8 (

is produced whenever a contact occurs in the dynamic
system. The total wear is then the sum

K P;Sj
W = _— (2)
total g o
where
W = wear volume (inch?)
P = load (1lb) = impact force
S = sliding distance (inch)
H = Brinell hardness
K = empirically determined wear coefficient

While H is a material constant and P and S are
calculated from the SYSDYN module of TRIBO 1, K is determined
from test data and depends on whether the contact occurs
during the break-in period or during steady state operation.
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The parametric study of the 124 mm A/F bearings revealed
that the roller coupled corner radius run out is the most S
significant parameter followed by the roller end clearance
; and roller squareness. Of course the end effect of the
A corner radius runout and the end squareness is the roller

> P > v e o

unbalance which produces the skew force. Thus, roller
unbalance and end clearance have the most significant effect -

‘v v

on normal roller wear. This qualitative trend is not
difficult to understand. 1Its quantitative aspect requires

.
.« ou -
’..l'rﬁ

test data for model correlation purposes. <

In the present 60 mm roller bearing study it was also
found that the most siqnificant effect on roller wear comes ii
from the corner radius runout, end squareness, initial -
unbalance and end clearance. Again, the roller unbalance and

the roller end clearance provide the most impetus to the

pN s

normal roller wear - the same qualitative trend established

h' [N LSS

. in the 124 mm bearing program.

2 Test data from the 60 mm bearings is, however, rather -

? limited. It consists of two distinct sets for 10 hr wear
data - one with high roller unbalance and large end clearance 5
and the other with low roller unbalance and small end g
clearance. Since intermediate wear data is not available,
the characteristic wear coefficient relating to the break-in .

X period as distinct from steady state operation is not known. -

Fven if one assumes the same wear coefficient for both

oprrating modes, the fact that the effects of roller

unbalance and end clearance are confounded does not provide

the information necessary to identify the independent

effects.

P

e e e,
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FIGURE 35 TRIBO 1 MODULAR PROGRAM
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5.0 CONCLUSIONS ht
X The temperature measurements carried out on the bearing ;
. outer rings all show the expected trend of increasing &
temperature with dn number. The average ring temperature ﬁ

increase from 1.0 Mdn to 3.0 Mdn is generally in the range
of 50°F to 150°F. The o0il temperature rise in passing
through the bearing generally falls within the range of 50°F
to 75°F.

A survey of bearing cage speed versus the shaft speed
indicates that at values below 2.6 Mdn, the cage speed is
proportional to the loading as well as oil flow rates. At
speeds above 2.7 Mdn, cage slip is minimal and at 3.0 Mdn,
the cage speed is in the order of 97% of the epicyclic value ﬁ
and appears to be totally independent of applied load or oil .
flow rates.

f The statistically useable data represents only 4
individual bearing designs out of the 14 contained in the

A original designed experiment. Statistical analysis of the
data submitted led to the conclusion that the effects of at
least four of the independent variables were confounded;
that is, cannot be separated. It was further concluded that
nothing was to be gained by using this data to attempt a
modification of the existing TRIBO I wear model. The
parametric trends already incorporated in TRIBO I based on

A

earlier 124 mm bearing data are not contradicted by the .
limited 60 mm data. Based on these facts, no changes were KX

M

made to the TRIBO I wear model as a result of the subject
study. ;
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